Author:
Cowley Hannah Paris,Robinette Michael S.,Matelsky Jordan K.,Xenes Daniel,Kashyap Aparajita,Ibrahim Nabeela F.,Robinson Matthew L.,Zeger Scott,Garibaldi Brian T.,Gray-Roncal William
Abstract
AbstractAs clinicians are faced with a deluge of clinical data, data science can play an important role in highlighting key features driving patient outcomes, aiding in the development of new clinical hypotheses. Insight derived from machine learning can serve as a clinical support tool by connecting care providers with reliable results from big data analysis that identify previously undetected clinical patterns. In this work, we show an example of collaboration between clinicians and data scientists during the COVID-19 pandemic, identifying sub-groups of COVID-19 patients with unanticipated outcomes or who are high-risk for severe disease or death. We apply a random forest classifier model to predict adverse patient outcomes early in the disease course, and we connect our classification results to unsupervised clustering of patient features that may underpin patient risk. The paradigm for using data science for hypothesis generation and clinical decision support, as well as our triaged classification approach and unsupervised clustering methods to determine patient cohorts, are applicable to driving rapid hypothesis generation and iteration in a variety of clinical challenges, including future public health crises.
Funder
Hopkins inHealth
The Johns Hopkins Precision Medicine Program
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. KENKO - an AI system to hold health records and assist individuals across cross domains;2023 6th International Conference on Recent Trends in Advance Computing (ICRTAC);2023-12-14