Author:
Ueno Hiroshi,Takahashi Yu,Murakami Shinji,Wani Kenta,Miyazaki Tetsuji,Matsumoto Yosuke,Okamoto Motoi,Ishihara Takeshi
Abstract
AbstractExperimenters and treatment methods are the major contributors to data variability in behavioral neuroscience. However, home cage characteristics are likely associated with data variability. Mice housed in breeding cages spontaneously exhibit behavioral patterns such as biting into the wire grid and climbing on the grid lid. We aimed to clarify the effect of covering the stainless steel wire grid lid in commonly used home cage with Plexiglas to prevent climbing on muscle strength in mice. Furthermore, we investigated the effects of climbing prevention on activity and anxiety-like behavior, and the impact of climbing prevention during the postnatal development period and adulthood on muscle strength. Muscle strength, anxiety-like behavior, and locomotor activity were assessed by a battery of tests (wire hang, suspension, grip strength, rotarod, elevated-plus maze, and open field tests). Mice prevented from climbing the wire grid during postnatal development displayed lower muscle strength than those able to climb. Moreover, mice prevented from climbing for 3 weeks following maturity had weakened muscles. The muscle strength was decreased with 3 weeks of climbing prevention in even 1-year-old mice. In summary, the stainless steel wire grid in the home cage contributed to the development and maintenance of muscle strength in mice.
Publisher
Springer Science and Business Media LLC
Reference65 articles.
1. Crawley, J. What's wrong with my mouse: Behavioral phenotyping of transgenic and knockout mice, 2nd edn. John Wiley & Sons, Inc. (2007).
2. Grieder. F. B., & Strandberg, J. D. (eds Hau, J., van Hoosier, G. L. Jr). In: Handbook of Laboratory Animal Science. CRC Press. 1–11 (2003).
3. Kafkafi, N. et al. Reproducibility and replicability of rodent phenotyping in preclinical studies. Neurosci. Biobehav. Rev. 87, 218–232 (2018).
4. Chesler, E. J., Wilson, S. G., Lariviere, W. R., Rodriguez-Zas, S. L. & Mogil, J. S. Identification and ranking of genetic and laboratory environment factors influencing a behavioral trait, thermal nociception, via computational analysis of a large data archive. Neurosci. Biobehav. Rev. 26, 907–923 (2002).
5. Bohlen, M. et al. Experimenter effects on behavioral test scores of eight inbred mouse strains under the influence of ethanol. Behav. Brain Res. 272, 46–54 (2014).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献