A constrained machine learning surrogate model to predict the distribution of water-in-oil emulsions in electrostatic fields

Author:

Kooti Ghazal,Dabir Bahram,Butscher Christoph,Taherdangkoo Reza

Abstract

AbstractAccurately describing the evolution of water droplet size distribution in crude oil is fundamental for evaluating the water separation efficiency in dehydration systems. Enhancing the separation of an aqueous phase dispersed in a dielectric oil phase, which has a significantly lower dielectric constant than the dispersed phase, can be achieved by increasing the water droplet size through the application of an electrostatic field in the pipeline. Mathematical models, while being accurate, are computationally expensive. Herein, we introduced a constrained machine learning (ML) surrogate model developed based on a population balance model. This model serves as a practical alternative, facilitating fast and accurate predictions. The constrained ML model, utilizing an extreme gradient boosting (XGBoost) algorithm tuned with a genetic algorithm (GA), incorporates the key parameters of the electrostatic dehydration process, including droplet diameter, voltage, crude oil properties, temperature, and residence time as input variables, with the output being the number of water droplets per unit volume. Furthermore, we modified the objective function of the XGBoost algorithm by incorporating two penalty terms to ensure the model’s predictions adhere to physical principles. The constrained model demonstrated accuracy on the test set, with a mean squared error of 0.005 and a coefficient of determination of 0.998. The efficiency of the model was validated through comparison with the experimental data and the results of the population balance mathematical model. The analysis shows that the initial droplet diameter and voltage have the highest influence on the model, which aligns with the observed behaviour in the real-world process.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3