Application of machine learning standardized integral area algorithm in measuring the scoliosis

Author:

Han Shuman,Zhao Hongyu,Zhang Yi,Yang Chen,Han Xiaonan,Wu Huizhao,Cao Lei,Yu Baohai,Wen Jin-Xu,Wu Tianhao,Gao Bulang,Wu Wenjuan

Abstract

AbstractThis study was to develop a computer vision evaluation method to automatically measure the degree of scoliosis based on the machine learning algorithm. For the X-ray images of 204 patients with idiopathic scoliosis who underwent full-spine radiography, histogram equalization of original image was performed before a flipping method was used to magnify asymmetric elements, search for the global maximum pixel value in each line, and scan local maximal pixel value, with the intersection set of two point sets being regarded as candidate anchor points. All fine anchors were fitted with cubic spline algorithm to obtain the approximate curve of the spine, and the degree of scoliosis was measured by the standardized integral area. All measured data were analyzed. In manual measurement, the Cobb angle was 11.70–25.00 (20.15 ± 3.60), 25.20–44.70 (33.89 ± 5.41), and 45.10–49.40 (46.98 ± 1.25) in the mild, moderate and severe scoliosis group, respectively, whereas the value for the standardized integral area algorithm was 0.072–0.298 (0.185 ± 0.040), 0.100–0.399 (0.245 ± 0.050), and 0.246–0.901 (0.349 ± 0.181) in the mild, moderate and severe scoliosis group, respectively. Correlation analysis between the manual measurement of the Cobb angle and the evaluation of the standardized integral area algorithm demonstrated the Spearman correlation coefficient r = 0.643 (P < 0.001). There was a positive correlation between the manual measurement of the Cobb angle and the measurement of the standardized integral area value. Two methods had good consistency in evaluating the degree of scoliosis. ROC curve analysis of the standardized integral area algorithm to measure the degree of scoliosis showed he cutoff value of the standardized integral area algorithm was 0.20 for the moderate scoliosis with an AUC of 0.865, sensitivity 0.907, specificity 0.635, accuracy 0.779, positive prediction value 0.737 and negative prediction value 0.859, and the cutoff value of the standardized integral area algorithm was 0.40 for the severe scoliosis with an AUC of 0.873, sensitivity 0.188, specificity 1.00, accuracy 0.936, positive prediction value 1 and a negative prediction value 0.935. Using the standardized integral area as an independent variable and the Cobb angle as a dependent variable, a linear regression equation was established as Cobb angle = 13.36 + 70.54 × Standardized area, the model has statistical significance. In conclusion, the integrated area algorithm method of machine learning can quickly and efficiently assess the degree of scoliosis and is suitable for screening the degree of scoliosis in a large dataset as a useful supplement to the fine measurement of scoliosis Cobb angle.

Funder

Natural Science Foundation of Hebei Province

the Follow-up Project of Hebei Provincial Health and Health Commission

Hebei Medical Science Research Project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3