Improving speech depression detection using transfer learning with wav2vec 2.0 in low-resource environments

Author:

Zhang Xu,Zhang Xiangcheng,Chen Weisi,Li Chenlong,Yu Chengyuan

Abstract

AbstractDepression, a pervasive global mental disorder, profoundly impacts daily lives. Despite numerous deep learning studies focused on depression detection through speech analysis, the shortage of annotated bulk samples hampers the development of effective models. In response to this challenge, our research introduces a transfer learning approach for detecting depression in speech, aiming to overcome constraints imposed by limited resources. In the context of feature representation, we obtain depression-related features by fine-tuning wav2vec 2.0. By integrating 1D-CNN and attention pooling structures, we generate advanced features at the segment level, thereby enhancing the model's capability to capture temporal relationships within audio frames. In the realm of prediction results, we integrate LSTM and self-attention mechanisms. This incorporation assigns greater weights to segments associated with depression, thereby augmenting the model's discernment of depression-related information. The experimental results indicate that our model has achieved impressive F1 scores, reaching 79% on the DAIC-WOZ dataset and 90.53% on the CMDC dataset. It outperforms recent baseline models in the field of speech-based depression detection. This provides a promising solution for effective depression detection in low-resource environments.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3