Lateral diffusion of CD14 and TLR2 in macrophage plasma membrane assessed by raster image correlation spectroscopy and single particle tracking

Author:

Makaremi Sara,Rose Markus,Ranjit Suman,Digman Michelle A.,Bowdish Dawn M. E.,Moran-Mirabal Jose M.

Abstract

AbstractThe diffusion of membrane receptors is central to many biological processes, such as signal transduction, molecule translocation, and ion transport, among others; consequently, several advanced fluorescence microscopy techniques have been developed to measure membrane receptor mobility within live cells. The membrane-anchored receptor cluster of differentiation 14 (CD14) and the transmembrane toll-like receptor 2 (TLR2) are important receptors in the plasma membrane of macrophages that activate the intracellular signaling cascade in response to pathogenic stimuli. The aim of the present work was to compare the diffusion coefficients of CD14 and TLR2 on the apical and basal membranes of macrophages using two fluorescence-based methods: raster image correlation spectroscopy (RICS) and single particle tracking (SPT). In the basal membrane, the diffusion coefficients obtained from SPT and RICS were found to be comparable and revealed significantly faster diffusion of CD14 compared with TLR2. In addition, RICS showed that the diffusion of both receptors was significantly faster in the apical membrane than in the basal membrane, suggesting diffusion hindrance by the adhesion of the cells to the substrate. This finding highlights the importance of selecting the appropriate membrane (i.e., basal or apical) and corresponding method when measuring receptor diffusion in live cells. Accurately knowing the diffusion coefficient of two macrophage receptors involved in the response to pathogen insults will facilitate the study of changes that occur in signaling in these cells as a result of aging and disease.

Funder

National Institutes of Health

Canada Research Chairs

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3