Biogenically induced bedded chert formation in the alkaline palaeo-lake of the Green River Formation

Author:

Kuma RyuseiORCID,Hasegawa HitoshiORCID,Yamamoto Koshi,Yoshida Hidekazu,Whiteside Jessica H.,Katsuta Nagayoshi,Ikeda Masayuki

Abstract

Abstract Rhythmically bedded cherts are observed in both pelagic marine and lacustrine deposits, but the formation mechanism in the latter remains highly uncertain. Our study of alternating chert–dolomite beds in the Eocene Green River Formation, Utah, USA reveals dense accumulations of organic-matter spheres (30–50 μm diameter) of probable algal cyst origin in the chert layers, and centennial- to millennial-scale periodicities in chert layer deposition. A positive correlation between the degree of degradation of the organic spheres and Si distribution implies decomposition of algal organic matter lead to precipitation of lacustrine chert. As both alkalinity and dissolved silica were likely high in the palaeo-lake waters of the Green River Formation, we hypothesize that decomposition of algal organic matter lowered the pH of sediment pore waters and caused silica precipitation. We propose a formation model in which the initial abundance of algal organic matter in sediment varies with productivity at the lake surface, and the decomposition of this algal matter controls the extent of silica precipitation in sediment. The formation of rhythmically bedded chert–dolomite may be linked to centennial- to millennial-scale climatic/environmental factors that modulate algal productivity, which are possibly tied to solar activity cycles known to have similar periodicities.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3