Abstract
AbstractThe main purpose of this study is to investigate the mechanical shock behavior and develop the shock resistance of widely preferred butterfly valves for navy defense industries by handling the real test results with computer aided design and simulation programs. The 2D and 3D drawings were realized by using solid modeling and design programs. Mechanical analyzes to determine the mechanical strength of the specimens were carried out with the finite element analysis method by using structural simulation program. Mechanical shock test simulations were carried out by with shock response spectrum analysis. Solidification, filling-time–temperature analyzes, and simulation studies of inner stresses caused by micro and macro shrinkages were performed by using the casting simulation program. Comparisons of virtual tests simulated in computer environment with real tests were done in shock test setup. Products made of bronze were preferred due to the high corrosion resistance and the desire to be a useful research article that can respond to common applications in the defense industry. Virtual shock test simulation and real shock tests were performed according to the MIL STD 810 standard. The shock test results observations showed that by revising the design with a safety factor of 18% on the specimen, it was ensured that the product could pass the mechanical shock test even at an acceleration of 4000 m/s2. Then material become safe to use. With the use of a three-way feeder in the production of the reinforced design the difference in net weight from 19% has been reduced to 12%, while the production time has been improved by 22%.
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Sapir, J. "Conversion of Russian Defense Industries: A Macroeconomic and Regional Perspective." Privatization, Conversion, and Enterprise Reform in Russia. Routledge, (2019). 137–165.
2. Hsieh, H. P., Wu, Y. C., Lu, W. M. & Chen, Y. C. Assessing and ranking the innovation ability and business performance of global companies in the aerospace and defense industry. Manag. Decis. Econ. 41(6), 952–963 (2020).
3. Harutyunyan, G. E. & Davtyan, A. G. Issues of international cooperation in defense industry: critical review. Ars Admin. 11(2), 287–305 (2019).
4. Gonzales, D., Harting, S., Adgie, M. K., Brackup, J., Polley, L., Stanley, K. D. "Unclassified and secure: a defense industrial base cyber protection program for unclassified defense networks.":(2020), Rand Arroyo Center Santa Monica Ca Santa Monica United States.
5. Wingerter, J. J., Benjamin A. "A snapshot of the socialization process: Socialization tactics, behaviors, and outcomes in the US Aerospace and defense industry." IJEE International Journal of Engineering Education 36.3 (2020).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献