A machine learning approach to identify the universality of solitary perturbations accompanying boundary bursts in magnetized toroidal plasmas

Author:

Lee J. E.,Seo P. H.,Bak J. G.,Yun G. S.

Abstract

AbstractExperimental observations assisted by 2-D imaging diagnostics on the KSTAR tokamak show that a solitary perturbation (SP) emerges prior to a boundary burst of magnetized toroidal plasmas, which puts forward SP as a potential candidate for the burst trigger. We have constructed a machine learning (ML) model based on a convolutional deep neural network architecture for a statistical study to identify the SP as a boundary burst trigger. The ML model takes sequential signals detected from 19 toroidal Mirnov coils as input and predicts whether each temporal frame corresponds to an SP. We trained the network in a supervised manner on a training set consisting of real signals with manually annotated SP locations and synthetic burst signals. The trained model achieves high performances in various metrics on a test data set. We also demonstrated the reliability of the model by visualizing the discriminative parts of the input signals that the model recognizes. Finally, we applied the trained model to new data from KSTAR experiments, which were never seen during training, and confirmed that the large burst at the plasma boundary that can fatally damage the fusion device always involves the emergence of SP. This result suggests that the SP is a key to understanding and controlling of the boundary burst in magnetized toroidal plasmas.

Funder

National Research Foundation

Ministry of Science and ICT, South Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 2022 Review of Data-Driven Plasma Science;IEEE Transactions on Plasma Science;2023-07

2. A Robust and Fast Data Management System for Machine-Learning Research of Tokamaks;IEEE Transactions on Plasma Science;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3