Characteristics of multi-channel intermuscular directional coupling based on time-varying partial directional coherence analysis

Author:

Du Yihao,Fan Qiang,Chang Chaoqun,Bai Xiaolin,Cao Tianfu,Zhang Yanfu,Wang Xiaoran,Xie Ping

Abstract

AbstractThe human body transmits directional information between muscles during upper limb movements, and this will be particularly evident when the dominant muscle changes during movement transitions. By capturing the electromyography (EMG) signals of wrist flexion and extension continuous transition movements, we investigated the characteristics of multichannel intermuscular directional coupling and directional information transmission, and consequently explored the control mechanism of Central nervous system (CNS) and the coordination mechanism of motor muscles. Multi-channel EMG was collected from 12 healthy subjects under continuous translational movements of wrist flexion and extension, and the time-varying biased directional coherence analysis (TVPDC) model was constructed using partial directional coherence analysis (PDC) frequency domain directionality to study the directional information transfer characteristics in the time–frequency domain, screen closely related muscle pairs and perform directional coupling significance analysis. Palmaris longus (PL) played a dominant role under wrist flexion movements(WF), Extensor Carpi Radialis (ECR) played a dominant role under wrist extension movements(WE), and the remaining muscles responded to them with information and Biceps Brachii (BB) played a responsive role throughout the movement; flexor pairs had the highest positive coupling values in the beta band during Conversion action1 (MC1) and WF phases, and extensor pairs had the highest positive coupling values in the gamma band during Conversion action2(MC2) phase and the highest coupling values in the beta band during WE phase. TVPDC can effectively analyze the multichannel intermuscular directional coupling and information transmission relationship of surface electromyography under wrist flexion and extension transition movements, providing a reference for exploring the control mechanism of CNS and abnormal control mechanism in patients with motor dysfunction in a new perspective.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3