Author:
Hng Chee Ho,Camp Esther,Anderson Peter,Breen James,Zannettino Andrew,Gronthos Stan
Abstract
AbstractPrevious studies of global binding patterns identified the epigenetic factor, EZH2, as a regulator of the homeodomain-only protein homeobox (HOPX) gene expression during bone marrow stromal cell (BMSC) differentiation, suggesting a potential role for HOPX in regulating BMSC lineage specification. In the present study, we confirmed that EZH2 direct binds to the HOPX promoter region, during normal growth and osteogenic differentiation but not under adipogenic inductive conditions. HOPX gene knockdown and overexpression studies demonstrated that HOPX is a promoter of BMSC proliferation and an inhibitor of adipogenesis. However, functional studies failed to observe any affect by HOPX on BMSC osteogenic differentiation. RNA-seq analysis of HOPX overexpressing BMSC during adipogenesis, found HOPX function to be acting through suppression of adipogenic pathways associated genes such as ADIPOQ, FABP4, PLIN1 and PLIN4. These findings suggest that HOPX gene target pathways are critical factors in the regulation of fat metabolism.
Funder
University of Adelaide Postgraduate International Student Scholarship
National Health and Medical Research Council
The Australian Cranio-Maxillo Facial Foundation
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Friedenstein, A. J., Chailakhjan, R. K. & Lalykina, K. S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 3, 393–403 (1970).
2. Gronthos, S. et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J. Cell Sci. 116, 1827–1835 (2003).
3. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).
4. Menicanin, D., Bartold, P. M., Zannettino, A. C. & Gronthos, S. Identification of a common gene expression signature associated with immature clonal mesenchymal cell populations derived from bone marrow and dental tissues. Stem Cells Dev. 19, 1501–1510 (2010).
5. Chen, F. et al. Hop is an unusual homeobox gene that modulates cardiac development. Cell 110, 713–723 (2002).
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献