High-resolution surface water dynamics in Earth’s small and medium-sized reservoirs

Author:

Donchyts Gennadii,Winsemius Hessel,Baart Fedor,Dahm Ruben,Schellekens Jaap,Gorelick Noel,Iceland Charles,Schmeier Susanne

Abstract

AbstractSmall and medium-sized reservoirs play an important role in water systems that need to cope with climate variability and various other man-made and natural challenges. Although reservoirs and dams are criticized for their negative social and environmental impacts by reducing natural flow variability and obstructing river connections, they are also recognized as important for social and economic development and climate change adaptation. Multiple studies map large dams and analyze the dynamics of water stored in the reservoirs behind these dams, but very few studies focus on small and medium-sized reservoirs on a global scale. In this research, we use multi-annual multi-sensor satellite data, combined with cloud analytics, to monitor the state of small (10–100 ha) to medium-sized (> 100 ha, excluding 479 large ones) artificial water reservoirs globally for the first time. These reservoirs are of crucial importance to the well-being of many societies, but regular monitoring records of their water dynamics are mostly missing. We combine the results of multiple studies to identify 71,208 small to medium-sized reservoirs, followed by reconstructing surface water area changes from satellite data using a novel method introduced in this study. The dataset is validated using 768 daily in-situ water level and storage measurements (r2 > 0.7 for 67% of the reservoirs used for the validation) demonstrating that the surface water area dynamics can be used as a proxy for water storage dynamics in many cases. Our analysis shows that for small reservoirs, the inter-annual and intra-annual variability is much higher than for medium-sized reservoirs worldwide. This implies that the communities reliant on small reservoirs are more vulnerable to climate extremes, both short-term (within seasons) and longer-term (across seasons). Our findings show that the long-term inter-annual and intra-annual changes in these reservoirs are not equally distributed geographically. Through several cases, we demonstrate that this technology can help monitor water scarcity conditions and emerging food insecurity, and facilitate transboundary cooperation. It has the potential to provide operational information on conditions in ungauged or upstream riparian countries that do not share such data with neighboring countries. This may help to create a more level playing field in water resource information globally.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3