A novel specimen shape for measurement of linear strain fields by means of digital image correlation

Author:

Amraish Nedaa,Reisinger Andreas,Pahr Dieter

Abstract

AbstractStrains on the surface of engineering structures or biological tissues are non-homogeneous. These strain fields can be captured by means of Digital Image Correlation (DIC). However, DIC strain field measurements are prone to noise and filtering of these fields influences measured strain gradients. This study aims to design a novel tensile test specimen showing two linear gradients, to measure full-field linear strain measurements on the surface of test specimens, and to investigate the accuracy of DIC strain measurements globally (full-field) and locally (strain gauges’ positions), with and without filtering of the DIC strain fields. Three materials were employed for this study: aluminium, polymer, and bovine bone. Normalized strain gradients were introduced that are load independent and evaluated at two local positions showing 3.6 and 6.9% strain change per mm. Such levels are typically found in human bones. At these two positions, two strain gauges were applied to check the experimental strain magnitudes. A third strain gauge was applied to measure the strain in a neutral position showing no gradient. The accuracy of the DIC field measurement was evaluated at two deformation stages (at $$\approx $$ 500 and 1750 μstrain) using the root mean square error (RMSE). The RMSE over the two linear strain fields was less than 500 μstrain for both deformation stages and all materials. Gaussian low-pass filter (LPF) reduced the DIC noise between 25% and 64% on average. As well, filtering improved the accuracy of the local normalized strain gradients measurements with relative difference less than 20% and 12% for the high- and low-gradient, respectively. In summary, a novel specimen shape and methodological approach are presented which are useful for evaluating and improving the accuracy of the DIC measurement where non-homogeneous strain fields are expected such as on bone tissue due to their hierarchical structure.

Funder

Gesellschaft für Forschungsförderung Niederösterreich m.b.H

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3