Classification at the accuracy limit: facing the problem of data ambiguity

Author:

Metzner Claus,Schilling Achim,Traxdorf Maximilian,Tziridis Konstantin,Maier Andreas,Schulze Holger,Krauss Patrick

Abstract

AbstractData classification, the process of analyzing data and organizing it into categories or clusters, is a fundamental computing task of natural and artificial information processing systems. Both supervised classification and unsupervised clustering work best when the input vectors are distributed over the data space in a highly non-uniform way. These tasks become however challenging in weakly structured data sets, where a significant fraction of data points is located in between the regions of high point density. We derive the theoretical limit for classification accuracy that arises from this overlap of data categories. By using a surrogate data generation model with adjustable statistical properties, we show that sufficiently powerful classifiers based on completely different principles, such as perceptrons and Bayesian models, all perform at this universal accuracy limit under ideal training conditions. Remarkably, the accuracy limit is not affected by certain non-linear transformations of the data, even if these transformations are non-reversible and drastically reduce the information content of the input data. We further compare the data embeddings that emerge by supervised and unsupervised training, using the MNIST data set and human EEG recordings during sleep. We find for MNIST that categories are significantly separated not only after supervised training with back-propagation, but also after unsupervised dimensionality reduction. A qualitatively similar cluster enhancement by unsupervised compression is observed for the EEG sleep data, but with a very small overall degree of cluster separation. We conclude that the handwritten letters in MNIST can be considered as ’natural kinds’, whereas EEG sleep recordings are a relatively weakly structured data set, so that unsupervised clustering will not necessarily re-cover the human-defined sleep stages.

Funder

Deutsche Forschungsgemeinschaft

Universitätsklinikum Erlangen

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3