Deep learning classification of urinary sediment crystals with optimal parameter tuning

Author:

Nagai Takahiro,Onodera Osamu,Okuda Shujiro

Abstract

AbstractThe examination of urinary sediment crystals, the sedimentary components of urine, is useful in screening tests, and is always performed in medical examinations. The examination of urinary sediment crystals is typically done by classifying them under a microscope. Although automated analyzers are commercially available, manual classification is required, which is time-consuming and varies depending on the technologist performing the test and the laboratory. A set of test images was created, consisting of training, validation, and test images. The training images were transformed and augmented using various methods. The test images were classified to determine the patterns that could be correctly classified. Convolutional neural networks were used for training. Furthermore, we also considered the case where the crystal subcategories were not treated as separate. Learning with all parameters except the random cropping parameter showed the highest accuracy value. Treating the subcategories together or separately did not seem to affect the accuracy value. The accuracy of the best pattern was 0.918. When matched to a real-world case, the percentage of correct answers was 88%. Although the number of images was limited, good results were obtained in the classification of crystal images with optimal parameter tuning. The parameter optimization performed in this study can be used as a reference for future studies, with the goal of image classification by deep learning in clinical practice.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3