Overexpression of microRNA-205-5p promotes cholangiocarcinoma growth by reducing expression of homeodomain-interacting protein kinase 3

Author:

Mon Aye Myat,Intuyod Kitti,Klungsaeng Sirinapha,Jusakul Apinya,Pongking Thatsanapong,Lert-itthiporn Worachart,Luvira Vor,Pairojkul Chawalit,Plengsuriyakarn Tullayakorn,Na-Bangchang Kesara,Pinlaor Somchai,Pinlaor Porntip

Abstract

AbstractThe microRNA miR-205-5p has diverse effects in different malignancies, including cholangiocarcinoma (CCA), but its effects on CCA progression is unclear. Here we investigated the role and function of miR-205-5p in CCA. Three CCA cell lines and human serum samples were found to have much higher expression levels of miR-205-5p than seen in typical cholangiocyte cell lines and healthy controls. Inhibition of miR-205-5p suppressed CCA cell motility, invasion and proliferation of KKU-213B whereby overexpression of miR-205-5p promoted cell proliferation and motility of KKU-100 cells. Bioinformatics tools (miRDB, TargetScan, miRWalk, and GEPIA) all predicted various miR-205-5p targets. Experiments using miR-205-5p inhibitor and mimic indicated that homeodomain-interacting protein kinase 3 (HIPK3) was a potential direct target of miR-205-5p. Overexpression of HIPK3 using HIPK3 plasmid cloning DNA suppressed migration and proliferation of KKU-100 cells. Notably, HIPK3 expression was lower in human CCA tissues than in normal adjacent tissues. High HIPK3 expression was significantly associated with longer survival time of CCA patients. Multivariate regression analysis indicated tissue HIPK3 levels as an independent prognostic factor for CCA patients. These findings indicate that overexpression of miR-205-5p promotes CCA cells proliferation and migration partly via HIPK3-dependent way. Therefore, targeting miR-205-5p may be a potential treatment approach for CCA.

Funder

the National Research Council of Thailand

the Basic Research Fund of Khon Kaen University through the Cholangiocarcinoma Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3