Multifunctional leather finishing vs. applications, through the addition of well-dispersed flower-like nanoparticles

Author:

Fierro Francesca,Iuliano Mariagrazia,Cirillo Claudia,Florio Claudia,Maffei Gaetano,Loi Andrea,Batakliev Todor,Adami Renata,Sarno Maria

Abstract

AbstractIn the present paper, multifunctional flower-like nanoparticles were synthesized to be used in the leather finishing. They are capable of conferring simultaneously and synergistic antimicrobial, self-cleaning, light resistance, hydrophobic, mechanical, thermal, and fluorescent properties due to the presence of Ag, TiO2, and SiO2 NPs. These nanoparticles form a “flower-like” structure in which the “pistil” is made up of TiO2 and the “petals” that surround it of silver nanoparticles and silica nanoparticles, whose dimensions are of the order of ten nanometers. Their surfaces enjoy abundant hydrophilic functionalities to be dispersed within inks commonly used during the leather finishing process. Leathers functionalized with these nanomaterials showed significantly improved self-cleaning properties after 15 h of exposure to UV light, and antibacterial properties 10 times higher than that shown by the untreated samples. Aging tests were performed (ISO 105-B02, ISO 17228, SAEJ 2412). ΔE, color variation decreased by approximately 30%, if compared with samples not refined with flower-like NPs. Furthermore, the results of the mechanical tests (ISO 17076, FCA 50444) evidence amazing properties, e.g. abrasion resistance more than significantly improved, increase in resistance from 1500 cycles for the untreated samples to 3000 cycles for the leathers finished with flower-like NPs. The contact angle analysis, capturing the angle that traces the air–water to water–substrate interface from the origin of the air–water-substrate contact point at the edge, is practically unchanged after 10 s in the case of nanoparticles containing finishing.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3