LINC00963/miR-4458 regulates the effect of oxaliplatin in gastric cancer by mediating autophagic flux through targeting of ATG16L1

Author:

Hou Meng,Li Chao,Dong Shunbin

Abstract

AbstractOxaliplatin resistance is the greatest obstacle to the management of local recurrence in gastric cancer patients after surgery. Accumulating evidence has suggested that inhibiting autophagy may be a novel approach for reversing resistance to oxaliplatin treatment. In this manuscript, we aimed to investigate the role of LINC00963 in regulating autophagy and oxaliplatin resistance. qRT-PCR, immunochemistry staining, and western blotting were used to detect gene expression. Plasmids were used to up- and downregulate the expression of LINC00963 and miR-4458. A caspase 3/7 activity kit and flow cytometry were used to detect the apoptosis rate. CCK8 and Transwell assays were used to test cell proliferation and migration, respectively. Transmission electron microscopy and a dual fluorescent lentivirus autophagy system were used to evaluate autophagic flux. Dual luciferase reporter gene assays and RNA pulldown assays were used to evaluate the potential crosstalk. LINC00963 was highly expressed in gastric cancer patients and cell lines. In addition, high LINC00963 expression was found to be associated with poor prognosis and local recurrence in gastric cancer patients, indicating that LINC00963 might be involved in oxaliplatin resistance. Moreover, we found that LINC00963 was aberrantly highly expressed in oxaliplatin-resistant SGC-7901 (SGC-7901-R) cells and promoted proliferation and migration and reduced the apoptosis rate in SGC-7901-R cells. Furthermore, among all potential target microRNAs, miR-4458 was found to be negatively regulated by LINC00963 both in vivo and in vitro. In addition, miR-4458 overexpression led to impaired proliferation and migration and enhanced cell apoptosis and G1 arrest in SGC-7901-R cells. Further RNA pulldown and dual luciferase reporter gene assays indicated the interaction between LINC00963 and miR-4458. Moreover, we found enhanced autophagic flux in SGC-7901-R cells compared with SGC-7901 cells; in addition, an inhibitor of autophagy induced apoptosis in SGC-7901-R cells. Then, we found that downregulation of LINC00963 expression and upregulation of miR-4458 expression significantly suppressed autophagic flux in SGC-7901-R cells. Based on starBase V3.0 and dual luciferase reporter gene assays, we predicted and confirmed that ATG16L1 might be the target of miR-4458 to regulate autophagy. In conclusion, LINC00963 and miR-4458 are potential biomarkers for predicting the overall survival of gastric cancer patients. Moreover, targeting LINC00963 to inhibit autophagic flux sensitizes gastric cancer cells to oxaliplatin treatment, suggesting that it is a potential novel therapeutic target for improving oxaliplatin sensitivity.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3