Memristor-based PUF for lightweight cryptographic randomness

Author:

Ibrahim Hebatallah M.,Abunahla Heba,Mohammad Baker,AlKhzaimi Hoda

Abstract

AbstractPhysical unclonable functions (PUF) are cryptographic primitives employed to generate true and intrinsic randomness which is critical for cryptographic and secure applications. Thus, the PUF output (response) has properties that can be utilized in building a true random number generator (TRNG) for security applications. The most popular PUF architectures are transistor-based and they focus on exploiting the uncontrollable process variations in conventional CMOS fabrication technology. Recent development in emerging technology such as memristor-based models provides an opportunity to achieve a robust and lightweight PUF architecture. Memristor-based PUF has proven to be more resilient to attacks such as hardware reverse engineering attacks. In this paper, we design a lightweight and low-cost memristor PUF and verify it against cryptographic randomness tests achieving a unique, reliable, irreversible random sequence output. The current research demonstrates the architecture of a low-cost, high endurance Cu/HfO$$_2/p^{++}$$ 2 / p + + Si memristor-based PUF (MR-PUF) which is compatible with advanced CMOS technologies. This paper explores the 15 NIST cryptographic randomness tests that have been applied to our Cu/HfO$$_2/p^{++}$$ 2 / p + + Si MR-PUF. Moreover, security properties such as uniformity, uniqueness, and repeatability of our MR-PUF have been tested in this paper and validated. Additionally, this paper explores the applicability of our MR-PUF on block ciphers to improve the randomness achieved within the encryption process. Our MR-PUF has been used on block ciphers to construct a TRNG cipher block that successfully passed the NIST tests. Additionally, this paper investigated MR-PUF within a new authenticated key exchange and mutual authentication protocol between the head-end system (HES) and smart meters (SM)s in an advanced metering infrastructure (AMI) for smartgrids. The authenticated key exchange protocol utilized within the AMI was verified in this paper to meet the essential security when it comes to randomness by successfully passing the NIST tests without a post-processing algorithm.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3