Multiscale off-fault brecciation records coseismic energy budget of principal fault zone

Author:

Agroli Geri,Okamoto Atsushi,Uno Masaoki,Tsuchiya Noriyoshi

Abstract

AbstractBreccia and pulverized rock are typical textures in off-fault damage adjacent to a main seismogenic zone. Previously, by estimating the energy required to advance the rupture in this zone using particle size distribution at sub-millimeter/micrometer scales, we could constrain the energy budget during coseismic events. However, whether microscopic estimation is sufficient to capture surface energy fragmentation during an earthquake and the effect of measurement scale variation on calculation of co-seismic energy partitioning remained unclear. Here, we investigated the mechanism of coseismic off-fault damage based on field and microstructural observations of a well-exposed breccia body in Ichinokawa, Japan. We used in situ clast measurements coupled with thin-section analysis of breccia clasts to estimate the energy budget of the damage zone adjacent to the principal slip zone of the Median Tectonic Line (MTL). The total surface energy density and corresponding surface energy per unit fault for a width of ~ 500 m of the dynamical damage zone were estimated. The moment magnitude estimated based on surface energy was 5.8–8.3 Mw. In Ichinokawa, off-fault fragmentation is initiated by coseismic activity and is followed by fluid activity. Under dynamic fragmentation conditions, the scale is important to calculate the surface energy.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3