A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet

Author:

Wang Xiaolei,Hu Zirong,Shi Shouhai,Hou Mei,Xu Lei,Zhang Xiang

Abstract

AbstractSemantic segmentation of remote sensing imagery (RSI) is critical in many domains due to the diverse landscapes and different sizes of geo-objects that RSI contains, making semantic segmentation challenging. In this paper, a convolutional network, named Adaptive Feature Fusion UNet (AFF-UNet), is proposed to optimize the semantic segmentation performance. The model has three key aspects: (1) dense skip connections architecture and an adaptive feature fusion module that adaptively weighs different levels of feature maps to achieve adaptive feature fusion, (2) a channel attention convolution block that obtains the relationship between different channels using a tailored configuration, and (3) a spatial attention module that obtains the relationship between different positions. AFF-UNet was evaluated on two public RSI datasets and was quantitatively and qualitatively compared with other models. Results from the Potsdam dataset showed that the proposed model achieved an increase of 1.09% over DeepLabv3 + in terms of the average F1 score and a 0.99% improvement in overall accuracy. The visual qualitative results also demonstrated a reduction in confusion of object classes, better performance in segmenting different sizes of object classes, and better object integrity. Therefore, the proposed AFF-UNet model optimizes the accuracy of RSI semantic segmentation.

Funder

the key scientific and technological project of Henan Province

Open Fund of National Engineering Research Center for Geographic Information System, China University of Geosciences

Pre-research Project of SongShan Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3