Moisture-induced power generator fabricated on a lateral field-excited quartz resonator

Author:

Baek Hyerim,Choi Jihun,Jeon Sangmin

Abstract

AbstractWe fabricated a moisture-induced power generator on a lateral field-excited quartz resonator to simultaneously measure changes in mass and voltage generation during water vapor adsorption. Circularly interdigitated gold electrodes were vacuum deposited on the top surface and used to measure changes in mass, and two symmetric semicircular gold electrodes were vacuum deposited on the bottom surface and used to measure changes in voltage generation. After coating a thin film of a mixture comprising sodium alginate, carbon black, and polyvinyl alcohol (SCP) on the top surface, an electric field was applied to create a concentration gradient of sodium ions between the interdigitated electrodes. The changes in the resonant frequency and voltage generation of the SCP-coated quartz resonator were measured simultaneously under various relative humidity conditions. The results revealed, for the first time, three distinct voltage-generation regions during moisture adsorption: (i) a region of negligible voltage generation, (ii) that of an increase in voltage generation, and (iii) that of a decrease in voltage generation.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3