Author:
Tran Thao Quynh Ngan,Park Bang Ju,Yun Woo Hyun,Duong Tien Nhac,Yoon Hyon Hee
Abstract
AbstractHighly porous self-assembled nanostructured Ni@C and NiO@C were synthesized via calcination of a Ni-based metal–organic framework. The morphology, structure, and composition of as synthesized Ni@C and NiO@C were characterized by SEM, FIB-SEM, TEM, and XRD. The electro-catalytic activity of the Ni@C and NiO@C catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the Ni@C had a higher residual carbon content and a higher specific surface area than NiO@C, thus exhibiting an enhanced electrochemical performance for urea oxidation. A direct urea fuel cell with Ni@C as an anode catalyst featured an excellent maximum power density of 13.8 mW cm−2 with 0.33 M urea solution in 1 M KOH as fuel and humidified air as oxidant at 50 °C, additionally showing excellent stability during continuous 20-h operation. Thus, this work showed that the highly porous carbon-supported Ni catalysts derived from Ni-based metal–organic framework can be used for urea oxidation and as an efficient anode material for urea fuel cells.
Funder
National Research Foundation of Korea
Korea Institute of Energy Technology Evaluation and Planning
Publisher
Springer Science and Business Media LLC
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献