Imaging furcation defects with low-dose cone beam computed tomography

Author:

Ruetters MauriceORCID,Gehrig Holger,Kim Ti-Sun,Bartha Valentin,Bruckner Thomas,Schwindling Franz Sebastian,Felten Anna,Lux Christopher,Sen SinanORCID

Abstract

AbstractDifferent cone beam computed tomography (CBCT) protocols have shown promising results for imaging furcation defects. This study evaluates the suitability of low-dose (LD)-CBCT for this purpose. Fifty-nine furcation defects of nine upper and 16 lower molars in six human cadavers were measured by a high-dose (HD)-CBCT protocol, a LD-CBCT protocol, and a surgical protocol. HD-CBCT and LD-CBCT measurements were made twice by two investigators and were compared with the intrasurgical measurements, which served as the reference. Furcation defect volumes generated from HD-CBCT and LD-CBCT imaging were segmented by one rater. Cohen’s kappa and intraclass correlation coefficient (ICC) values were calculated to determine intra- and interrater reliability. The level of significance was set at α = 0.05. In total, 59 furcation defects of nine upper and 16 lower human molars were assessed. Comparing CBCT furcation defect measurements with surgical measurements revealed a Cohen’s kappa of 0.5975 (HD-and LD-CBCT), indicating moderate agreement. All furcation defects identified by HD-CBCT were also detected by LD-CBCT by both raters, resulting in a Cohen’s kappa of 1. For interrater agreement, linear furcation defect measurements showed an ICC of 0.992 for HD-CBCT and 0.987 for LD-CBCT. The intrarater agreement was 0.994(r1)/0.992(r2) for HD-CBCT and 0.987(r1)/0.991(r2) for LD-CBCT. The intermodality agreement was 0.988(r1)/0.991(r2). Paired t-test showed no significant differences between HD-CBCT and LD-CBCT measurements. LD-CBCT is a precise and reliable method for detecting and measuring furcation defects in mandibular and maxillary molars in this experimental setting. It has the potential to improve treatment planning and treatment monitoring with a far lower radiation dose than conventional HD-CBCT.

Funder

Ruprecht-Karls-Universität Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3