Theoretical study of the interaction of fullerenes with the emerging contaminant carbamazepine for detection in aqueous environments

Author:

Lemos Silva Rodrigo A.,Scalabrini Machado Daniel F.,de Oliveira Heibbe C. B.,Ribeiro Luciano,da Silva Filho Demétrio A.

Abstract

AbstractThe global increase in drug consumption exposes the growing need to develop new systems for the detection, capture, and treatment of bioactive molecules. Carbamazepine is one instance of such contaminants at the top of the ranking commonly found in sewage treatment systems. This work, therefore, presents a theoretical study of fullerene C60 and its derivatives with substitutional doping with B, Al, Ga, Si, Ge, N and P, for the detection and capture of carbamazepine is aqueous medium. Solvation effects were included by means of the Polarizable Continuum Solvent method. The results indicate that doped fullerenes are sensitive for the detection of carbamazepine both in gaseous and aquatic environments. Investigation on the intermolecular interactions between the drug and the fullerene molecule were carried out, allowing the characterization of the interactions responsible for stabilizing the adsorption of carbamazepine to the fullerenes. The theoretical survey revealed that fullerenes doped with Al, Ga, Si and Ge chemically adsorb carbamazepine whereas for the case of fullerenes doped with other heteroatoms physisorption is responsible for the molecular recognition. Relying on DFT calculations, the fullerene derivatives C59Al, C59Si and C59Ga are the most suitable to act both as a sensor and to uptake carbamazepine in aquatic environments.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3