Fatty acid challenge shifts cellular energy metabolism in a substrate-specific manner in primary bovine neonatal hepatocytes

Author:

Chandler T. L.,Kendall S. J.,White H. M.

Abstract

AbstractAdipose tissue mobilization increases circulating fatty acid (FA) concentrations, leads to increased hepatic FA uptake, and influences hepatic metabolism. Our objective was to trace carbon flux through metabolic pathways in primary bovine neonatal hepatocytes challenged with FA, and to examine the effect of FA challenge on oxidative stress. Primary bovine neonatal hepatocytes were isolated from 4 Holstein bull calves and maintained for 24 h before treatment with either 0 or 1 mM FA cocktail. After 21 h, either [1-14C]C16:0 or [2-14C]sodium pyruvate was added to measure complete and incomplete oxidation and cellular glycogen. Cellular and media triglyceride (TG), and glucose and ß-hydroxybutyrate (BHB) export were quantified, as well as reactive oxygen species and cellular glutathione (GSH/GSSH). Fatty acid treatment increased cellular, but not media TG, and although complete oxidation of [1-14C]C16:0 was not affected by FA, BHB export was increased. Reactive oxygen species were increased with FA treatment and GSSH was marginally increased such that the ratio of GSH:GSSG was marginally decreased. Glucose export increased, and cellular glycogen marginally increased with FA treatment while [2-14C]sodium pyruvate oxidation was decreased. These data suggest that FA treatment shifts cellular energy metabolism in a substrate-specific manner, spares pyruvate carbon from oxidation, and stimulates glucose synthesis.

Funder

National Institute of Food and Agriculture, U.S. Department of Agriculture

Balchem Corporation, Real Science Initiative Grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3