Long term transcriptional and behavioral effects in mice developmentally exposed to a mixture of endocrine disruptors associated with delayed human neurodevelopment

Author:

Repouskou Anastasia,Papadopoulou Anastasia-Konstantina,Panagiotidou Emily,Trichas Panagiotis,Lindh Christian,Bergman Åke,Gennings Chris,Bornehag Carl-Gustaf,Rüegg Joëlle,Kitraki Efthymia,Stamatakis Antonios

Abstract

AbstractAccumulating evidence suggests that gestational exposure to endocrine disrupting chemicals (EDCs) may interfere with normal brain development and predispose for later dysfunctions. The current study focuses on the exposure impact of mixtures of EDCs that better mimics the real-life situation. We herein describe a mixture of phthalates, pesticides and bisphenol A (mixture N1) detected in pregnant women of the SELMA cohort and associated with language delay in their children. To study the long-term impact of developmental exposure to N1 on brain physiology and behavior we administered this mixture to mice throughout gestation at doses 0×, 0.5×, 10×, 100× and 500× the geometric mean of SELMA mothers’ concentrations, and examined their offspring in adulthood. Mixture N1 exposure increased active coping during swimming stress in both sexes, increased locomotion and reduced social interaction in male progeny. The expression of corticosterone receptors, their regulator Fkbp5, corticotropin releasing hormone and its receptor, oxytocin and its receptor, estrogen receptor beta, serotonin receptors (Htr1a, Htr2a) and glutamate receptor subunit Grin2b, were modified in the limbic system of adult animals, in a region-specific, sexually-dimorphic and experience-dependent manner. Principal component analysis revealed gene clusters associated with the observed behavioral responses, mostly related to the stress axis. This integration of epidemiology-based data with an experimental model increases the evidence that prenatal exposure to EDC mixtures impacts later life brain functions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3