Author:
Zorn Malte,Kühnisch Jirko,Bachmann Sebastian,Seifert Wenke
Abstract
AbstractAutosomal recessive Cohen syndrome is a neurodevelopmental disorder characterized by postnatal microcephaly, intellectual disability, and a typical facial gestalt. Genetic variants in VPS13B have been found to cause Cohen syndrome, but have also been linked to autism, retinal disease, primary immunodeficiency, and short stature. While it is well established that loss-of-function mutations of VPS13B cause Cohen syndrome, the relevance of missense variants for the pathomechanism remains unexplained. Here, we investigate their pathogenic effect through a systematic re-evaluation of clinical patient information, comprehensive in silico predictions, and in vitro testing of previously published missense variants. In vitro analysis of 10 subcloned VPS13B missense variants resulted in full-length proteins after transient overexpression. 6/10 VPS13B missense variants show reduced accumulation at the Golgi complex in the steady state. The overexpression of these 6/10 VPS13B missense variants did not rescue the Golgi fragmentation after the RNAi-mediated depletion of endogenous VPS13B. These results thus validate 6/10 missense variants as likely pathogenic according to the classification of the American College of Medical Genetics through the integration of clinical, genetic, in silico, and experimental data. In summary, we state that exact variant classification should be the first step towards elucidating the pathomechanisms of genetically inherited neuronal diseases.
Funder
Deutsche Forschungsgemeinschaft
Charité – Universitätsmedizin Berlin
Charité - Universitätsmedizin Berlin
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献