Highly sensitive non-enzymatic electrochemical glucose sensor based on dumbbell-shaped double-shelled hollow nanoporous CuO/ZnO microstructures

Author:

Haghparas Zahra,Kordrostami Zoheir,Sorouri Mohsen,Rajabzadeh Maryam,Khalifeh Reza

Abstract

AbstractA high-performance non-enzymatic glucose sensor based on hybrid metal-oxides is proposed. Dumbbell-shaped double-shelled hollow nanoporous CuO/ZnO microstructures (CuO/ZnO-DSDSHNM) were prepared via the hydrothermal method using pluronic F-127 as a surfactant. This structure is studied by various physicochemical characterizations such as scanning electron microscopy, X-ray diffraction spectroscopy, inductively coupled plasma atomic emission spectroscopy, elemental mapping techniques, X-ray photoelectron spectroscopy, and transmission electron microscopy. This unique CuO/ZnO-DSDSHNM provides both a large surface area and an easy penetrable structure facilitating improved electrochemical reactivity toward glucose oxidation. The prepared CuO/ZnO-DSDSHNM was used over the glassy carbon electrode (GCE) as the active material for glucose detection and then coated by Nafion to provide the proposed Nafion/CuO/ZnO-DSDSHNM/GCE. The fabricated glucose sensor exhibits an extremely wide dynamic range from 500 nM to 100 mM, a sensitivity of 1536.80 µA mM−1 cm−2, a low limit of detection of 357.5 nM, and a short response time of 1.60 s. The proposed sensor also showed long-term stability, good reproducibility, favorable repeatability, excellent selectivity, and satisfactory applicability for glucose detection in human serum samples. The achieved high-performance glucose sensing based on Nafion/CuO/ZnO-DSDSHNM/GCE shows that both the material synthesis and the sensor fabrication methods have been promising and they can be used in future researches.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3