The effect of different aqueous solutions ratios of Ocimum basilicum utilized in AgNPs synthesis on the inhibition of bacterial growth

Author:

Qaeed Motahher A.,Hendi Abdulmajeed,Obaid Ahmed S.,Thahe Asad A.,Osman Abdalghaffar M.,Ismail A.,Mindil A.,Eid Alharthi A.,Aqlan Faisal,Osman Nadir M. A.,AL-Farga Ammar,Al-Maaqar Saleh M.,Saif Ala’eddin A.

Abstract

AbstractThis study examined the effect of varying concentrations of Ocimum basilicum aqueous extract, which was done via the green synthesis of Silver nanoparticles (AgNPs), on the identification of the most effective concentration for bacteria inhibitory activity. Different concentrations of the aqueous Ocimum basilicum extract (0.25, 0.50, 0.75 and 1.00 mM) were used as reducing and stabilizing agent to synthesize AgNPs by means of the reduction method. The crystal structure and morphology of the NPs were characterized UV–Vis spectra, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The antibacterial efficacy of AgNPs was studied against E. coli ATCC 35218 using well diffusion, MIC, MBC, and time-kill curve. The dark yellow color of the Ocimum basilicum aqueous solution indicates the successful synthesis process of the AgNPs. UV-spectra of the AgNPs display a gradual increase of absorption in sequence with concentration increase of aqueous Ocimum basilicum extract solution from 0.25 to 1.00 mM. This, in turn, led to a shift in the wavelength from 488 to 497 nm, along with a change in the nanoparticle size from 52 to 8 nm. The tests also showed a high activity of the particles against bacteria (E. coli), ranging between 15.6 and 62.5 µg/ml. Based on AgNPs, it was confirmed that an aqueous Ocimum basilicum extract can be used as an effective, reducing and stabilizing agent for the synthesis of different sizes of AgNPs based on the solvent concentration. The AgNPs also proved to be effective in inhibiting and killing bacteria.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3