Prediction of prostate cancer biochemical recurrence by using discretization supports the critical contribution of the extra-cellular matrix genes

Author:

Marin Laura,Casado Fanny

Abstract

AbstractDue to its complexity, much effort has been devoted to the development of biomarkers for prostate cancer that have acquired the utmost clinical relevance for diagnosis and grading. However, all of these advances are limited due to the relatively large percentage of biochemical recurrence (BCR) and the limited strategies for follow up. This work proposes a methodology that uses discretization to predict prostate cancer BCR while optimizing the necessary variables. We used discretization of RNA-seq data to increase the prediction of biochemical recurrence and retrieve a subset of ten genes functionally known to be related to the tissue structure. Equal width and equal frequency data discretization methods were compared to isolate the contribution of the genes and their interval of action, simultaneously. Adding a robust clinical biomarker such as prostate specific antigen (PSA) improved the prediction of BCR. Discretization allowed classifying the cancer patients with an accuracy of 82% on testing datasets, and 75% on a validation dataset when a five-bin discretization by equal width was used. After data pre-processing, feature selection and classification, our predictions had a precision of 71% (testing dataset: MSKCC and GSE54460) and 69% (Validation dataset: GSE70769) should the patients present BCR up to 24 months after their final treatment. These results emphasize the use of equal width discretization as a pre-processing step to improve classification for a limited number of genes in the signature. Functionally, many of these genes have a direct or expected role in tissue structure and extracellular matrix organization. The processing steps presented in this study are also applicable to other cancer types to increase the speed and accuracy of the models in diverse datasets.

Funder

Pontificia Universidad Católica del Perú

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3