Continent-island boundary and environment-shaped evolution in the marine amphipod Ampithoe marcuzzii complex (Crustacea: Eumalacostraca: Ampithoidae)

Author:

Iwasa-Arai TammyORCID,Siqueira Silvana G. L.,Sobral-Souza Thadeu,Leite Fosca P. P.,Andrade Sónia C. S.

Abstract

AbstractMarine amphipods are crustaceans that lack a larval phase and consequently have low dispersion rates. Despite that, these crustaceans present a remarkable ability to be transported by rafting on natural floating substrata, especially macroalgae, where they find shelter, food and a mating ground. The species Ampithoe marcuzzii is widely distributed throughout the western Atlantic Ocean. Here, it was used as a model to study seascape genomics and phylogeography in invertebrates with low dispersion capacities. We anticipated that the lineages would present isolation-by-distance patterns. However, surface currents and other abiotic variables could facilitate connectivity among distant sites. Based on mitochondrial and nuclear genes, SNPs, and environmental associations, we observed the presence of a species complex within A. marcuzzii, separating mainland and insular populations. Each species showed an independent evolutionary history, with a strong latitudinal population structure and evidence of isolation-by-distance and isolation-by-environment, characterizing the 'continent' species. Historical expansion and environmental variables were observed associated with the southeastern population, and ecological niche modeling corroborated the region as a paleorefuge. Conversely, populations from 'islands' presented complicated evolutionary histories, with closer localities genetically isolated and distant localities connected. These findings indicate that insular populations with low dispersion capacity might be more susceptible to spatial connectivity by floating substrata and to changes in surface currents. In contrast, mainland populations might be more vulnerable to local climate changes due to lack of gene flow.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3