Revealing time’s secrets at the National Theatre of Costa Rica via innovative software for cultural heritage research

Author:

Barrantes-Madrigal M. D.,Zúñiga-Salas T.,Arce-Tucker R. E.,Chavarría-Sibaja A.,Sánchez-Solís J.,Mena-Vega J.,Acuña-Umaña K.,Gómez-Tencio M.,Wang-Qiu K.,Lizano-Sánchez F.,Marín-Cruz C.,Herrera-Sancho O. A.

Abstract

AbstractEstablishing affordable, efficient, accessible, innovative, and multidisciplinary methodologies to the diagnosis of the conservation state of an artwork is key to carry out appropriate strategies of conservation and consequently to the creation of modern public policies on cultural heritage. Limited access to large-format paintings is a challenge to restoration scientists seeking to obtain information quickly, in a non-destructive and non-invasive manner, and identify regions of interest. Therefore, we put forward two unique software tools based on multispectral imaging techniques, with the long-term aim to assess the artist’s intentions, creative process, and colour palette. This development paves the way for a comprehensive and multidisciplinary understanding of the mysteries encompassed in each pictorial layer, through the study of their physical and chemical characteristics. We conducted the first ever study on Musas I and Musas II, two large-format paintings by Italian artist Carlo Ferrario, located in the National Theatre of Costa Rica. In this study, we used our novel imaging techniques to choose regions of interest in order to study sample layers; while also assessing the works’ state of conservation and possible biodeterioration. We explored the applications of our two versatile software tools, RegionOfInterest and CrystalDistribution, and confirmed paint stratigraphies by means of microscopy and spectroscopy analyses (OM, SEM-EDX, Fluorescent microscopy, FTIR-ATR and micro-Raman). In a pilot study, we identified the artist’s main colour palette: zinc white, lead white, chrome yellow, lead read, viridian, along with artificial vermilion and ultramarine pigments. We were able to identify artificial vermilion and ultramarine and distinguish them from the natural pigments using CrystalDistribution to map the average size and diameter of the pigment crystals within the paint layers. This study demonstrated that software-based multidisciplinary imaging techniques are novel in establishing preventive and non-invasive methods for historical painting conservation studies, in addition, this study provides tools with great potential to be used in the future in applications such as virtual restoration.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3