Classification of static postures with wearable sensors mounted on loose clothing

Author:

Jayasinghe Udeni,Janko Balazs,Hwang Faustina,Harwin William S.

Abstract

AbstractInertial Measurement Units (IMUs) are a potential way to monitor the mobility of people outside clinical or laboratory settings at an acceptable cost. To increase accuracy, multiple IMUs can be used. By embedding multiple sensors into everyday clothing, it is possible to simplify having to put on individual sensors, ensuring sensors are correctly located and oriented. This research demonstrates how clothing-mounted IMU readings can be used to identify 4 common postures: standing, sitting, lying down and sitting on the floor. Data were collected from 5 healthy adults, with each providing 1–4 days of data with approximately 5 h each day. Each day, participants performed a fixed set of activities that were video-recorded to provide a ground truth. This is an analysis of accelerometry data from 3 sensors incorporated into right trouser-leg at the waist, thigh and ankle. Data were classified as static/ dynamic activities using a K-nearest neighbour (KNN) algorithm. For static activities, the inclination angles of the three sensors were estimated and used to train a second KNN classifier. For this highly-selected dataset (60000–70000 data points/posture), the static postures were classified with 100% accuracy, illustrating the potential for clothing-mounted sensors to be used in posture classification.

Funder

University Grant Commision, Sri Lanka

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3