Author:
Ghasemi Azizolah,Farzaneh Salim,Moharramnejad Sajjad,Sharifi Raouf Seyed,Youesf Ahmed Fathy,Telesinski Arkadiusz,Kalaji Hazem M.,Mojski Jacek
Abstract
AbstractThe effect of triad application of the phytohormone 24-epibrassinolide (EBL), the polyamine spermine (Spm), and the element silicon (Si) has not yet been considered on plant growth and behavior in water-stressed conditions. We aimed to evaluate the impact of single/dual/triad application of 24-epibrassinolide (EBL), spermine (Spm), and silicon (Si) on the growth, photosynthetic metabolites, and antioxidant enzymes in the maize plant exposed to water stress. This study was conducted as a potential drought resistance system and plants' maintenance against oxidative damage. In this regard, one maize hybrid (Paya) was grown under well-watered and water-deficit conditions (interrupted irrigation at the flowering and the filling seed stages) with and without foliar spraying of EBL, Spm, and/or Si. Drought conditions remarkably reduced growth, productivity, water-related content (RWC), and chlorophyll content. However, the dual and triad applications of EBL (0.1 mg L−1), Spm (25 mg L−1), and Si (7 mg L−1) significantly improved the above parameters. Water stress considerably augmented the levels of H2O2 and MDA. Their content in stress-subjected plants was significantly reduced by triad application. In water-stressed circumstances and after foliar treatments, the activities of superoxide dismutase, catalase, and peroxidase as well as the amounts of total soluble proteins, phenolic compounds, proline, and glycine betaine all improved. Overall, triad application increased the plant's drought resistance and diminished ROS accumulation by raising the scavenging via the enhanced activity of the antioxidant enzymes.
Publisher
Springer Science and Business Media LLC
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献