Author:
Erkol Şirag,Castellano Claudio,Radicchi Filippo
Abstract
Abstract
Influence maximization is the problem of finding the set of nodes of a network that maximizes the size of the outbreak of a spreading process occurring on the network. Solutions to this problem are important for strategic decisions in marketing and political campaigns. The typical setting consists in the identification of small sets of initial spreaders in very large networks. This setting makes the optimization problem computationally infeasible for standard greedy optimization algorithms that account simultaneously for information about network topology and spreading dynamics, leaving space only to heuristic methods based on the drastic approximation of relying on the geometry of the network alone. The literature on the subject is plenty of purely topological methods for the identification of influential spreaders in networks. However, it is unclear how far these methods are from being optimal. Here, we perform a systematic test of the performance of a multitude of heuristic methods for the identification of influential spreaders. We quantify the performance of the various methods on a corpus of 100 real-world networks; the corpus consists of networks small enough for the application of greedy optimization so that results from this algorithm are used as the baseline needed for the analysis of the performance of the other methods on the same corpus of networks. We find that relatively simple network metrics, such as adaptive degree or closeness centralities, are able to achieve performances very close to the baseline value, thus providing good support for the use of these metrics in large-scale problem settings. Also, we show that a further 2–5% improvement towards the baseline performance is achievable by hybrid algorithms that combine two or more topological metrics together. This final result is validated on a small collection of large graphs where greedy optimization is not applicable.
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Ratkiewicz, J. et al. Truthy: mapping the spread of astroturf in microblog streams. In Proceedings of the 20th international conference companion on World wide web, pp. 249–252 (ACM, 2011).
2. Acemoglu, D., Ozdaglar, A. & ParandehGheibi, A. Spread of (mis) information in social networks. Games and Economic Behavior 70(2), 194–227 (2010).
3. Del Vicario, M. et al. The spreading of misinformation online. Proceedings of the National Academy of Sciences 113(3), 554–559 (2016).
4. Centola, D. The spread of behavior in an online social network experiment. Science 329(5996), 1194–1197 (2010).
5. Lerman, K. & Ghosh, R. Information contagion: An empirical study of the spread of news on digg and twitter social networks. Icwsm 10, 90–97 (2010).
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献