Production of biodiesel from non-edible feedstocks using environment friendly nano-magnetic Fe/SnO catalyst

Author:

Hanif Maryam,Bhatti Ijaz Ahmad,Zahid Muhammad,Shahid Muhammad

Abstract

AbstractEnvironmental problems associated with chemical catalysts to fulfil an ever-increasing energy demand have led to the search for an alternative environment friendly heterogeneous catalyst. If a catalyst being used in the biodiesel production is not environment friendly, then the environment is being contaminated in another way while trying to avoid pollution caused by burning of fossil fuels. The present study reports the use of nano-magnetic catalyst Fe/SnO supported on feldspar for the transesterification of various non-edible feedstocks oil, including Pongamiapinnata (karanja), Carthamusoxyacantha (wild safflower), Citrulluscolocynthis (bitter apple), Sinapisarvensis (wildmustard) and Ricinuscommunis (castor). The optimized transesterification parameter was oil to methanol ratio (1:5, 1:10, 1:15, 1:20 and 1:25), catalyst amount (0.5, 1, 1.5, 2, 2.5%), temperature (40, 50, 60, 70 and 80 °C), and reaction times (30, 60, 90, 120 and 150 min). The biodiesel yield was found to be more than 97% for all the tested feedstocks with a maximum biodiesel yield of 98.1 ± 0.6% obtained for bitter apple seed oil under optimum conditions (oil to methanol ratio of 1:10, catalyst amount of 1% at 50 °C for 120 min). The catalysts used for transesterification were magnetically extracted after completion of the reaction. Different physico-chemical parameters like pour point, density, cloud point, iodine value, acid value, saponification and cetane number were determined and the quality of all the biodiesel samples were found to be in the standard range (ASTM D6751 and EN 1404). Different techniques like XRD, FTIR, SEM and EDX were used to characterize the prepared nano-magnetic (Fe/SnO/Feldspar) catalyst.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3