Ultrafast carbon nanotubes growth on recycled carbon fibers and their evaluation on interfacial shear strength in reinforced composites

Author:

Salas A.,Medina C.ORCID,Vial J. T.,Flores P.ORCID,Canales C.ORCID,Tuninetti V.ORCID,Jaramillo A. F.ORCID,Meléndrez M. F.ORCID

Abstract

AbstractThe global demand for products manufactured with carbon fibers (CFs) has increased in recent years; however, the waste generated at the end of the product lifetime has also increased. In this research, the impact of the addition of carbon nanotubes (CNTs) on the interlaminated resistance of recycled carbon fibers (RCFs) was studied. In this work, a recycling process of the composite material was applied via thermolysis to obtain the CFs, followed by the growth of CNTs on their surface using the Poptube technique. The recycling temperature were 500 °C and 700 °C; and ferrocene and polypyrrole were used to grow CNTs on CFs surface. CNTs were verified by Raman spectroscopy and scanning electron microscopy (SEM). Finally, to determine the interlaminar resistance, a double cantilever beam (DCB) test was performed. The results indicate that with Poptube technique, CNTs can be grown on RCFs using both impregnations. Thermolysis recycling process at 500 °C allowed CFs without resin residues and without visible damage. The DCB tests showed a decrease in the fracture resistance in mode I loading of 34.9% for the polypyrrole samples and 29.3% for the ferrocene samples compared with the virgin carbon fibers (VCFs) samples with a resistance of 1052.5 J/m2.

Funder

Fondecyt initiation

ANID FONDEQUIP

FONDECYT REGULAR

PROGRAM OF RESEARCHERS

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3