Author:
Kawahara Yasuhito,Kobatake Shunya,Kaneko Kenji,Sasaki Taisuke,Ohkubo Tadakatsu,Takushima Chikako,Hamada Jun-ichi
Abstract
AbstractCombined addition of interstitial-substitutional elements has been acknowledged to contribute to the increase in the strengths of steels. For further improvements in mechanical properties, their atomic-scale interaction mechanisms with dislocations are required to be examined. In this study, both high-resolution transmission electron microscopy and atom-probe tomography were used to correlate interstitial-substitutional elements with dislocation characteristics in austenitic stainless steels. Three types of dislocation core structures are identified and associated with their strain fields as well as N and Cr atoms in the N-added steels. It is revealed that N atoms interact elastically with the dislocations, followed by the segregation of Cr atoms via the chemical interaction between N and Cr atoms. This insight significantly improves the understanding of the multiple alloying mechanism in metallic materials such as interstitial alloys and high-entropy alloys.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献