Engineer design process assisted by explainable deep learning network

Author:

Hsu Chia-Wei,Yang An-Cheng,Kung Pei-Ching,Tsou Nien-Ti,Chen Nan-Yow

Abstract

AbstractEngineering simulation accelerates the development of reliable and repeatable design processes in various domains. However, the computing resource consumption is dramatically raised in the whole development processes. Making the most of these simulation data becomes more and more important in modern industrial product design. In the present study, we proposed a workflow comprised of a series of machine learning algorithms (mainly deep neuron networks) to be an alternative to the numerical simulation. We have applied the workflow to the field of dental implant design process. The process is based on a complex, time-dependent, multi-physical biomechanical theory, known as mechano-regulatory method. It has been used to evaluate the performance of dental implants and to assess the tissue recovery after the oral surgery procedures. We provided a deep learning network (DLN) with calibrated simulation data that came from different simulation conditions with experimental verification. The DLN achieves nearly exact result of simulated bone healing history around implants. The correlation of the predicted essential physical properties of surrounding bones (e.g. strain and fluid velocity) and performance indexes of implants (e.g. bone area and bone-implant contact) were greater than 0.980 and 0.947, respectively. The testing AUC values for the classification of each tissue phenotype were ranging from 0.90 to 0.99. The DLN reduced hours of simulation time to seconds. Moreover, our DLN is explainable via Deep Taylor decomposition, suggesting that the transverse fluid velocity, upper and lower parts of dental implants are the keys that influence bone healing and the distribution of tissue phenotypes the most. Many examples of commercial dental implants with designs which follow these design strategies can be found. This work demonstrates that DLN with proper network design is capable to replace complex, time-dependent, multi-physical models/theories, as well as to reveal the underlying features without prior professional knowledge.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3