Resilience to drought of dryland wetlands threatened by climate change

Author:

Sandi Steven G.,Rodriguez Jose F.,Saintilan Neil,Wen Li,Kuczera George,Riccardi Gerardo,Saco Patricia M.

Abstract

AbstractDryland wetlands are resilient ecosystems that can adapt to extreme periodic drought–flood episodes. Climate change projections show increased drought severity in drylands that could compromise wetland resilience and reduce important habitat services. These recognized risks have been difficult to evaluate due to our limited capacity to establish comprehensive relationships between flood–drought episodes and vegetation responses at the relevant spatiotemporal scales. We address this issue by integrating detailed spatiotemporal flood–drought simulations with remotely sensed vegetation responses to water regimes in a dryland wetland known for its highly variable inundation. We show that a combination of drought tolerance and dormancy strategies allow wetland vegetation to recover after droughts and recolonize areas invaded by terrestrial species. However, climate change scenarios show widespread degradation during drought and limited recovery after floods. Importantly, the combination of degradation extent and increase in drought duration is critical for the habitat services wetland systems provide for waterbirds and fish.

Funder

University of Newcastle Australia

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3