Deep learning from HE slides predicts the clinical benefit from adjuvant chemotherapy in hormone receptor-positive breast cancer patients

Author:

Cho Soo Youn,Lee Jeong Hoon,Ryu Jai Min,Lee Jeong Eon,Cho Eun Yoon,Ahn Chang Ho,Paeng Kyunghyun,Yoo Inwan,Ock Chan-Young,Song Sang Yong

Abstract

AbstractWe hypothesized that a deep-learning algorithm using HE images might be capable of predicting the benefits of adjuvant chemotherapy in cancer patients. HE slides were retrospectively collected from 1343 de-identified breast cancer patients at the Samsung Medical Center and used to develop the Lunit SCOPE algorithm. Lunit SCOPE was trained to predict the recurrence using the 21-gene assay (Oncotype DX) and histological parameters. The risk prediction model predicted the Oncotype DX score > 25 and the recurrence survival of the prognosis validation cohort and TCGA cohorts. The most important predictive variable was the mitotic cells in the cancer epithelium. Of the 363 patients who did not receive adjuvant therapy, 104 predicted high risk had a significantly lower survival rate. The top-300 genes highly correlated with the predicted risk were enriched for cell cycle, nuclear division, and cell division. From the Oncotype DX genes, the predicted risk was positively correlated with proliferation-associated genes and negatively correlated with prognostic genes from the estrogen category. An integrative analysis using Lunit SCOPE predicted the risk of cancer recurrence and the early-stage hormone receptor-positive breast cancer patients who would benefit from adjuvant chemotherapy.

Funder

Lunit Inc.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3