ACPred-BMF: bidirectional LSTM with multiple feature representations for explainable anticancer peptide prediction

Author:

Han Bingqing,Zhao Nan,Zeng Chengshi,Mu Zengchao,Gong Xinqi

Abstract

AbstractCancer has become a major factor threatening human life and health. Under the circumstance that traditional treatment methods such as chemotherapy and radiotherapy are not highly specific and often cause severe side effects and toxicity, new treatment methods are urgently needed. Anticancer peptide drugs have low toxicity, stronger efficacy and specificity, and have emerged as a new type of cancer treatment drugs. However, experimental identification of anticancer peptides is time-consuming and expensive, and difficult to perform in a high-throughput manner. Computational identification of anticancer peptides can make up for the shortcomings of experimental identification. In this study, a deep learning-based predictor named ACPred-BMF is proposed for the prediction of anticancer peptides. This method uses the quantitative and qualitative properties of amino acids, binary profile feature to numerical representation for the peptide sequences. The Bidirectional LSTM network architecture is used in the model, and the attention mechanism is also considered. To alleviate the black-box problem of deep learning model prediction, we visualized the automatically extracted features and used the Shapley additive explanations algorithm to determine the importance of features to further understand the anticancer peptide mechanism. The results show that our method is one of the state-of-the-art anticancer peptide predictors. A web server as the implementation of ACPred-BMF that can be accessed via: http://mialab.ruc.edu.cn/ACPredBMFServer/.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3