Characterizations of botanical attractant of Halyomorpha halys and selection of relevant deorphanization candidates via computational approach

Author:

Zhong Yong-ZhiORCID,Xie Ming-HuiORCID,Huang CongORCID,Zhang XueORCID,Cao LiORCID,Chen Hao-LiangORCID,Zhang FengORCID,Wan Fang-HaoORCID,Han Ri-ChouORCID,Tang RuiORCID

Abstract

AbstractHalyomorpha halys has been recognized as a global cross-border pest species. Along with well-established pheromone trapping approaches, there have been many attempts to utilize botanical odorant baits for field monitoring. Due to sensitivity, ecological friendliness, and cost-effectiveness for large-scale implementation, the selection of botanical volatiles as luring ingredients and/or synergists for H. halys is needed. In the current work, botanical volatiles were tested by olfactometer and electrophysiological tests. Results showed that linalool oxide was a potential candidate for application as a behavioral modifying chemical. It drove remarkable attractiveness toward H. halys adults in Y-tube assays, as well as eliciting robust electroantennographic responsiveness towards antennae. A computational pipeline was carried out to screen olfactory proteins related to the reception of linalool oxide. Simulated docking activities of four H. halys odorant receptors and two odorant binding proteins to linalool oxide and nerolidol were performed. Results showed that all tested olfactory genes were likely to be involved in plant volatile-sensing pathways, and they tuned broadly to tested components. The current work provides insights into the later development of field demonstration strategies using linalool oxide and its molecular targets.

Funder

China National Tobacco Corporation 2020 Special Project of Science and Technology Plan

Key-Area Research and Development Program of Guangdong Province

China Postdoctoral Science Foundation

China National Tobacco Corporation 2020 Special Project of Science and Technology Plan - Yunnan Branch WP

Research and Development Projects in Key Fields in Guangdong Province

China National Key R&D Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3