Author:
Mazrouee Sepideh,Hallmark Camden J.,Mora Ricardo,Del Vecchio Natascha,Carrasco Hernandez Rocio,Carr Michelle,McNeese Marlene,Fujimoto Kayo,Wertheim Joel O.
Abstract
AbstractDetection of viral transmission clusters using molecular epidemiology is critical to the response pillar of the Ending the HIV Epidemic initiative. Here, we studied whether inference with an incomplete dataset would influence the accuracy of the reconstructed molecular transmission network. We analyzed viral sequence data available from ~ 13,000 individuals with diagnosed HIV (2012–2019) from Houston Health Department surveillance data with 53% completeness (n = 6852 individuals with sequences). We extracted random subsamples and compared the resulting reconstructed networks versus the full-size network. Increasing simulated completeness was associated with an increase in the number of detected clusters. We also subsampled based on the network node influence in the transmission of the virus where we measured Expected Force (ExF) for each node in the network. We simulated the removal of nodes with the highest and then lowest ExF from the full dataset and discovered that 4.7% and 60% of priority clusters were detected respectively. These results highlight the non-uniform impact of capturing high influence nodes in identifying transmission clusters. Although increasing sequence reporting completeness is the way to fully detect HIV transmission patterns, reaching high completeness has remained challenging in the real world. Hence, we suggest taking a network science approach to enhance performance of molecular cluster detection, augmented by node influence information.
Funder
Centers for Disease Control and Prevention
Office of Extramural Research, National Institutes of Health
Publisher
Springer Science and Business Media LLC