Tailoring plasticity mechanisms in compositionally graded hierarchical steels fabricated using additive manufacturing

Author:

Sridharan Niyanth,Gussev Maxim,Babu Sudarsanam

Abstract

AbstractWhile there exists in nature abundant examples of materials with site-specific gradients in microstructures and properties, engineers and designers have traditionally used monolithic materials with discrete properties. Now, however, additive manufacturing (AM) offers the possibility of creating structures that mimic some aspects of nature. One example that has attracted attention in the recent years is the hierarchical structure in bamboo. The hierarchical architecture in bamboo is characterized by spatial gradients in properties and microstructures and is well suited to accommodate and survive complex stress states, severe mechanical forces, and large deformations. While AM has been used routinely to fabricate functionally graded materials, this study distinguishes itself by leveraging AM and physical metallurgy concepts to trigger cascading deformation in a single sample. Specifically, we have been successful in using AM to fabricate steel with unique spatial hierarchies in structure and property to emulate the structure and deformation mechanisms in natural materials. This study shows an improvement in the strength and ductility of the nature-inspired “hierarchical steel” compared with conventional cast stainless steels. In situ characterization proves that this improvement is due to the sequential activation of multiple deformation mechanisms namely twinning, transformation-induced plasticity, and dislocation-based plasticity. While significantly higher strengths can be achieved by refining the chemical and processing technique, this study sets the stage to achieve the paradigm of using AM to fabricate structures which emulate the flexibility in mechanical properties of natural materials and are able to adapt to in-service conditions.

Funder

Office of Nuclear Energy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3