Modified polysulfone membrane facilitates rapid separation of plasma from whole blood for an effective anti-SARS-CoV-2-IgM diagnosis

Author:

Ijadi Bajestani Maryam,Ahmadzadeh Hossein

Abstract

AbstractDuring the outbreak of coronavirus, RT-PCR was the premier gold standard method for severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) diagnosis. However, the sophisticated procedure of RT-PCR persuades researchers to develop sustainable point-of-need immunoassay methods for tracing unwitting carriers of SARSCoV-2. Herein, by fabricating a modified polysulfone (MPSF) membrane, we developed an integrated radial flow immunoassay (IRFIA) platform as a point-of-care system, capable of multiplying the immunoassays at a short run time. The target molecule is the SARSCoV-2 IgM in separated plasma. Although the lateral flow immunoassay kits for the rapid identification of Covid-19 have already been commercially developed but, the proposed method is superior to the conventional lateral flow immunoassay. In the newly designed membrane system, we have combined the five membranes of prevalent lateral flow immunoassay (LFIA) strips in one polymeric membrane. The MPSF membrane is capable of separating plasma from whole blood sample, which will reduce the interference of red colour of hemoglobin with generated signal and enhance the immunoassay precision. The efficiency of plasma separation, reached the mean value of 97.34 v/v% in 5 s. Furthermore, the gel electrophoresis results of the separated plasma contrasted with centrifuged plasma sample, demonstrated more efficient separation by the membrane. Using the MPSF membrane, signal generation time reduced from about 20 min in conventional rapid test strip for Covid-19 to about 7 min in IRFIA platform. The sensitivity and specificity of the membrane platform were determined to be 89% and 90%, respectively and a Kappa coefficient of 0.79 showed reliable agreement between the RT-PCR and the membrane system.

Funder

Iran National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3