A dynamic prediction model of landslide displacement based on VMD–SSO–LSTM approach

Author:

Wang Haiying,Ao Yang,Wang Chenguang,Zhang Yingzhi,Zhang Xiaofeng

Abstract

AbstractAddressing the limitations of existing landslide displacement prediction models in capturing the dynamic characteristics of data changes, this study introduces a novel dynamic displacement prediction model for landslides. The proposed method combines Variational Mode Decomposition (VMD) with Sparrow Search Optimization (SSO) and Long Short-Term Memory (LSTM) techniques to formulate a comprehensive VMD–SSO–LSTM model. Through the application of VMD, the method dissects cumulative displacement and rainfall data, thereby extracting distinct components such as trend, periodicity, and fluctuation components for displacement, as well as low-frequency and high-frequency components for rainfall. Furthermore, leveraging Gray Correlational Analysis, the interrelationships between the periodic component of displacement and the low-frequency component of rainfall, as well as the fluctuation component of displacement and the high-frequency component of rainfall, are established. Building upon this foundation, the SSO–LSTM model dynamically predicts the interrelated displacement components, synthesizing the predicted values of each component to generate real-time dynamic forecasts. Simulation results underscore the effectiveness of the proposed VMD–SSO–LSTM model, indicating root-mean-square error (RMSE) and mean absolute percentage error (MAPE) values of 1.2329 mm and 0.1624%, respectively, along with a goodness of fit (R2) of 0.9969. In comparison to both back propagation (BP) prediction model and LSTM prediction model, the VMD–SSO–LSTM model exhibits heightened predictive accuracy.

Funder

The Traffic Research Project of the Department of Transport of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3