ANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flow

Author:

Pishnamazi Mahboubeh,Babanezhad Meisam,Nakhjiri Ali Taghvaie,Rezakazemi Mashallah,Marjani Azam,Shirazian Saeed

Abstract

AbstractIn this study, a square cavity is modeled using Computational Fluid Dynamics (CFD) as well as artificial intelligence (AI) approach. In the square cavity, copper (Cu) nanoparticle is the nanofluid and the flow velocity characteristics in the x-direction and y-direction, and the fluid temperature inside the cavity at different times are considered as CFD outputs. CFD outputs have been assessed using one of the artificial intelligence algorithms, such as a combination of neural network and fuzzy logic (ANFIS). As in the ANFIS method, we have a non-dimension procedure in the learning step, and there is no issue in combining other characteristics of the flow and thermal distribution beside the x and y coordinates, we combine two coordinate parameters and one flow parameter. This ability of method can be considered as a meshless learning step that there is no instability of the numerical method or limitation of boundary conditions. The data were classified using the grid partition method and the MF (membership function) type was dsigmf (difference between two sigmoidal membership functions). By achieving the appropriate intelligence in the ANFIS method, output prediction was performed at the points of cavity which were not included in the learning process and were compared to the existing data (the results of the CFD method) and were validated by them. This new combination of CFD and the ANFIS method enables us to learn flow and temperature distribution throughout the domain thoroughly, and eventually predict the flow characteristics in short computational time. The results from AI in the ANFIS method were compared to the ant colony and fuzzy logic methods. The data from CFD results were inserted into the ant colony system for the training process, and we predicted the data in the fuzzy logic system. Then, we compare the data with the ANFIS method. The results indicate that the ANFIS method has a high potentiality compared to the ant colony method because the amount of R in the ANIFS system is higher than R in the ant colony method. In the ANFIS method, R is equal to 0.99, and in the ant colony method, R is equal to 0.91. This shows that the ant colony needs more time for both the prediction and training of the system. Also, comparing the pattern recognition in the two systems, we can obviously see that by using the ANFIS method, the predictions completely match the target points. But the other method cannot match the flow pattern and velocity distribution with the CFD method.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3