A testis-expressing heme peroxidase HPX12 regulates male fertility in the mosquito Anopheles stephensi

Author:

Kumari Seena,Tevatiya Sanjay,Rani Jyoti,Das De Tanwee,Chauhan Charu,Sharma Punita,Sah Rajkumar,Singh Shailja,Pandey Kailash C.,Pande Veena,Dixit Rajnikant

Abstract

AbstractIn vertebrates dysregulation of the antioxidant defense system has a detrimental impact on male fertility and reproductive physiology. However, in insects, especially mosquitoes the importance of sperm quality has been poorly studied. Since long-term storage of healthy and viable sperm earmarks male reproductive competency, we tested whether the heme peroxidase, a member of antioxidant enzyme family proteins, and abundantly expressed in the testis, also influence male fertility in the mosquito An. stephensi. Here, we show that a heme peroxidase 12 (HPX12), is an important cellular factor to protect the sperms from oxidative stress, and maintains semen quality in the male mosquito reproductive organ. We demonstrate that knockdown of the HPX12 not only impairs the sperm parameters such as motility, viability but also causes a significant down-regulation of MAG expressing transcripts such as ASTEI02706, ASTEI00744, ASTEI10266, likely encoding putative Accessory gland proteins. Mating with HPX12 knockdown male mosquitoes, resulted in ~ 50% reduction in egg-laying, coupled with diminished larval hatchability of a gravid female mosquito. Our data further outlines that increased ROS in the HPX12 mRNA depleted mosquitoes is the ultimate cause of sperm disabilities both qualitatively as well as quantitatively. Our data provide evidence that testis expressing AsHPX12 is crucial for maintaining optimal homeostasis for storing and protecting healthy sperms in the male mosquito’s reproductive organs. Since, high reproductive capacity directly influences the mosquito population, manipulating male mosquito reproductive physiology could be an attractive tool to combat vector-borne diseases.

Funder

Council of Scientific and Industrial Research, India

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3